An Information Theoretic Measure of Sequence Recognition Performance Idiap-com 02-03 an Information Theoretic Measure of Sequence Recognition Performance
نویسنده
چکیده
Sequence recognition performance is often summarised first in terms of the number of hits (H), substitutions (S), deletions (D) and insertions (I), and then as a single statistic by the “word error rate” WER = 100(S+D+I)/(H+S+D). While in common use, WER has two disadvantages as a performance measure. One is that it has no upper bound, so it doesn’t tell you how good a system is, only that one is better than another. The other is that it is not D/I symmetric, although deletions and insertions are equally disadvantageous. At low error rates these limitations can be ignored. However, for the high error rates which can occur during tests for speech recognition in noise the WER measure starts to misbehave, giving far more weight to insertions than to deletions and regularly “exceeding 100%”. Here we derive an alternative summary statistic for sequence recognition accuracy: WIP = H2/(H+S+D)(H+S+I). The WIP (word information preserved) measure results from an approximation to the proportion of the information about the true sequence which is preserved in the recognised sequence. It has comparable simplicity to WER but neither of its disadvantages.
منابع مشابه
An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملSOME SIMILARITY MEASURES FOR PICTURE FUZZY SETS AND THEIR APPLICATIONS
In this work, we shall present some novel process to measure the similarity between picture fuzzy sets. Firstly, we adopt the concept of intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and picture fuzzy sets. Secondly, we develop some similarity measures between picture fuzzy sets, such as, cosine similarity measure, weighted cosine similarity measure, set-theoretic similar...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملAn Information-Theoretic Measure for Face Recognition: Comparison with Structural Similarity
Automatic recognition of people faces is a challenging problem that has received significant attention from signal processing researchers in recent years. This is due to its several applications in different fields, including security and forensic analysis. Despite this attention, face recognition is still one among the most challenging problems. Up to this moment, there is no technique that pr...
متن کامل